Generative AI: The Emergence of Hybrid AI

Share this article

It’s hard to imagine ChatGPT was first launched a bit more than a year ago (November 2022), and we’ve already seen progress at an astounding pace in the generative artificial intelligence (AI) space. Generative AI has been infused in several aspects of our daily technology use from suggesting answers to your questions on the online search engine and creating digital art, to even giving you gift ideas when you’re unsure what to get.

Global interest in this technology is considerable and growing, with private AI investment forecasted to increase to $160 billion by 2025, according to Goldman Sachs Research.

As large language models evolve and become more sophisticated, Goldman Sachs Chief Information Officer Marco Argenti sees a new hybrid AI model emerge.

He sat down with our Goldman Sachs colleagues to discuss what the hybrid AI ecosystem is and other developing generative AI trends in areas including digital rights, finance and weather forecasting.

This interview was originally published by our colleagues at Goldman Sachs as part of their Intelligence series, which features insights on diverse topics of impact within this dynamic economic environment.

Goldman Sachs Intelligence: You see a hybrid AI model developing. What will that look like?

Argenti: At the beginning everyone wanted to train their own model, build their own proprietary model with proprietary data, keeping the data largely on-premises to allow for tight control. Then people started to appreciate that in order to get the level of performance of the large models, you needed to replicate an infrastructure that was simply too expensive — investments in the hundreds of millions of dollars.

At the same time, some of those larger models began to be appreciated for some emerging abilities, around reasoning, problem solving, and logic — around the ability to break complex problems into smaller ones and then orchestrate a chain of thought around that.

Hybrid AI is where you are using these larger models as the brain that interprets the prompt and what the user wants, or as the orchestrator that kind of spells out tasks to a number of worker models specialized for a specific task. Those are generally open source, and they are often on-premises or on virtual private clouds, because they are smaller and may be trained with data that is highly proprietary. Then results come back, they are summarized, and finally given back to the user. Industries that rely more on proprietary data and have very strict regulation are most likely going to be the first to adopt this model.

Goldman Sachs Intelligence: How will companies start scaling while keeping the AI safe and maintaining compliance?

Argenti: AI went through the whole hype cycle faster than any other technology I’ve seen. Now we are at the stage where we expect to execute on some of the experiments and expect a return. Everyone I speak with has ROI in mind as almost the first-order priority. Most companies in 2024 are going to focus on the proof-of-concepts that are likely to show the highest return. This may be in the realm of automation, developer productivity, summarization of large corpuses of data, or offering a superior search experience in the realm of automated customer support and self-service information retrieval.

There will be a shift to practicality. But at the same time, I think this will require a very robust approach to ensure that as you scale the technology you are really focusing on safety — safety of the data, accuracy, proper controls as you expand the user base — as well as transparency, strong governance, adherence to applicable laws and, for regulated businesses, regulatory compliance. I think an ecosystem of tools around safety, compliance, and privacy will probably emerge as AI really starts to gain traction on mission-critical tasks.

Goldman Sachs Intelligence: You expect to see AI digital rights management emerge. Can you explain why?

Argenti: Where we are now, I am reminded of the early days of online video sharing, with the very aggressive takedowns of copyrighted material — an essentially reactive approach to the protection of digital rights. If you run the digital content playbook forward, that turned into a monetization opportunity. Video-sharing channels today have technology that allows them to trace the content being presented back to the source and share the monetization.

That doesn’t exist in AI today, but I think the technology will emerge to enable data to be traced back to its creator. Potentially you could see a model where every time a prompt generates an answer, that could be traced back to the source of the training — with monetization going back to the authors. I could see a future in which authors would be very happy to provide training data to AI because they will see it as a way to make money and participate in this revolution.

Goldman Sachs Intelligence: What other developments are you excited about?

Argenti: We’re starting to see multimodal AI models, and I think one modality that hasn’t been fully exploited yet is that of the time series. This would be using AI to deal with data points attached to a particular timestamp. There will be applications for this in areas such as finance, and of course weather forecasting, where time is a dominant dimension.

My prediction is that this will require a new architecture — similar to the way diffusion models are different from classical text-based transformer models. This may be where we see the next race to capture a variety of use cases that are untapped so far.

Goldman Sachs Intelligence: What are your thoughts on the regulation of AI?

Argenti: With appropriate guardrails, AI can lead to additional efficiencies over the long term, and we have just started to scratch the surface on its economic potential. That said, we’re very conscious of the risks of AI. It’s a powerful tool, and there needs to be a strong regulatory framework to maintain safe and sound markets and to protect consumers. At the same time, rules should ideally be constructed in a way that allows innovation to flourish and supports a level playing field.

Looking ahead, it will be important to continue to foster an environment that encourages collaboration between players, encourages open sourcing of the models when appropriate, and develops appropriate principle-based rules designed to help manage potential risks including bias, discrimination, safety-and-soundness, and privacy. This will allow the technology to move forward so that the US will continue to be a leader in the development of AI.

Goldman Sachs Intelligence: Where is capital going to flow into AI investments?

Argenti: I think the money will follow the evolution of the corporate spend. At the beginning, everybody was thinking that if they didn’t have their own pre-trained models, they wouldn’t be able to leverage the power of AI. Now, appropriate techniques such as retrieval-augmented generation, vectorization of content, and prompt engineering offer comparable if not superior performance to pre-trained models in something like 95% of the use cases — at a fraction of the cost.

I think it will be harder to raise money for any company creating foundational models. It’s so capital intensive you can’t really have more than a handful. But if you think of those as operating systems or platforms, there’s a whole world of applications that haven’t really emerged yet around those models. And there it’s more about innovation, more about agility, great ideas, and great user experience — rather than having to amass tens of thousands of GPUs for months of training.

There’s a great opportunity for capital to move towards the application layer, the toolset layer. I think we will see that shift happening, most likely as early as 2024.

This article is for informational purposes only and is not a substitute for individualized professional advice. Articles on this website were commissioned and approved by Marcus by Goldman Sachs®, but may not reflect the institutional opinions of The Goldman Sachs Group, Inc., Goldman Sachs Bank USA, Goldman Sachs & Co. LLC or any of their affiliates, subsidiaries or divisions.